
A short introduction to the moment problem

The goal of this problem is to touch upon the moment problem. Using the characteristic function we

obtain a growth condition on moments to guarantee that the moments of a random variable characterize

uniquely its distribution. We also provide a classical example showing that two random variables with

di�erent distributions can have the same moments.

The results we obtain in this problem are far from optimal. It is noteworthy that they can easily

be improved using basic knowledge of complex analysis. However, deriving conditions like the famous

Carleman's conditions require far more work.

The characteristic function

For any real-valued random variable X, we denote by ϕX the characteristic function of X de�ned by:

∀t ∈ R, ϕX(t) = E[exp(itX)].

1. Prove that ϕX is a well-de�ned complex-valued function bounded by 1.

2. Let p ∈ N∗. Prove that if X ∈ Lp then ϕX is a function of class Cp with

ϕX(t) =

p∑
k=0

ik

k!
E[Xk]tk + o(tp).

The Gaussian case

Let ζ be a Gaussian N (0, 1) random variable.

3. Prove that ϕζ is a function of class C1 and that ∀t ∈ R, ϕ′ζ(t) = −tϕζ(t).

4. Deduce that ∀t ∈ R, ϕζ(t) = exp
(
− t2

2

)
.

Let ζ be a Gaussian N (µ, σ2) random variable.

5. Prove that ∀t ∈ R, ϕζ(t) = exp
(
itµ− 1

2σ
2t2

)
.

Injectivity

Let Y be a real-valued random variable distributed according to a probability measure µ. Let ζ be a

N (0, 1) random variable independent of Y .

For n ∈ N∗, we de�ne Zn = Y + ζ
n .

Let us consider a continuous and bounded function ψ : R → R.

6. Prove that

E[ψ(Zn)] =
n√
2π

∫
z∈R

ψ(z)

(∫
y∈R

exp

(
−1

2
n2(z − y)2

)
µ(dy)

)
dz.

1



7. Prove that

∀z ∈ R,
∫
y∈R

exp

(
−1

2
n2(z − y)2

)
µ(dy) =

∫
x∈R

exp (−izx) 1

n
√
2π

exp

(
−1

2

(z − y)2

n2

)
ϕY (x)dx.

Hint: Recall that exp
(
− 1

2n
2(z − y)2

)
= ϕnζ(z − y) = ϕnζ(y − z).

8. Prove that limn→+∞ E[ψ(Zn)] = E[ψ(Y )].

9. Deduce that∫
z∈R

ψ(z)µ(dz) = lim
n→+∞

1

2π

∫
z∈R

ψ(z)

(∫
x∈R

exp (−izx) exp
(
−1

2

(z − y)2

n2

)
ϕY (x)dx

)
dz.

Let X and Y be two real-valued random variables with the same characteristic function.

10. Prove that X and Y have the same distribution.

The moment problem

Let us consider two real-valued random variables X and Y in
⋂

p∈N∗ Lp and such that

∀n ∈ N∗,E[Xn] = E[Y n] =: mn.

Let us assume that limn→+∞
m

1
2n
2n

n = 0.

11. Prove that

lim
n→+∞

E[|X|2n+1]
1

2n+1

n
= 0.

12. Prove that the series ∑
n≥0

E[|X|n] |t|
n

n!
and

∑
n≥0

E[|Y |n] |t|
n

n!

converge for all t ∈ R.

13. Deduce that X and Y have the same characteristic function.

14. Conclude.

In fact, using basic knowledge of complex analysis, the condition

lim
n→+∞

m
1
2n
2n

n
= 0

can be relaxed into

lim sup
n→+∞

m
1
2n
2n

n
< +∞.

A more general condition that guarantees that the moments uniquely characterize the distribution is

Carleman's condition:
+∞∑
n=1

m
− 1

2n
2n = +∞.
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A counterexample: the lognormal distribution

Let us consider ζ a Gaussian N (0, 1) random variable and let us denote by X the random variable exp(ζ).

15. Prove that for all n ∈ N∗,E[Xn] = exp
(
1
2n

2
)
.

16. Prove that X has density x 7→ 1x>0
1

x
√
2π

exp
(
− 1

2 (log(x))
2
)
.

17. Prove that

∀n ∈ N,
∫ +∞

0

xn
sin(2π log(x))

x
√
2π

exp

(
−1

2
(log(x))2

)
dx = 0.

18. Deduce that x 7→ 1x>0
(1+sin(2π log(x)))

x
√
2π

exp
(
− 1

2 (log(x))
2
)
is a probability density function and that

any random variable Y with this probability density function veri�es

∀n ∈ N∗,E[Y n] = E[Xn].

19. Comment.
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