
Conditional expectation, conditional distribution and

application to the Kalman �lter

Conditional expectation is a fundamental concept in probability theory and statistics. It provides a
rigorous way to incorporate information into computations and underpins many �ltering and stochastic
tools that have found widespread applications since the middle of the past century.

In this problem, we introduce conditional expectation by �rst considering the intuitive case of square-
integrable random variables (L2), then extending the characterization to integrable random variables (L1)
and non-negative random variables. After establishing the classical properties of conditional expectation,
we turn to the concept of conditional distribution and then focus on the particularly important case of
Gaussian random vectors.

We conclude with a standard yet powerful application: the Kalman �lter, a tool from statistics and signal
processing, that has been used in the Apollo guidance computer and is now embedded in virtually every
modern smartphone for position tracking.

Conditional Expectation � The L2 Case

Let (Ω,A,P) be a probability space. We denote by Lp(Ω,A,P) the space of A-measurable real-valued
random variables X such that E[|X|p] < +∞.1 All equalities and inequalities between random variables
are understood almost surely (i.e., up to a set of probability zero).

Recall that L2(Ω,A,P), equipped with the scalar product (X,Y ) 7→ E[XY ], is a Hilbert space.

1. Show that for any sub-σ-algebra B ⊂ A, the space L2(Ω,B,P) is a closed subspace of L2(Ω,A,P).

2. Let X ∈ L2(Ω,A,P). Show that the function

hX : L2(Ω,B,P) → R+

Y 7→ E[(X − Y )2]

admits a unique minimizer.

Hint: Consider a minimizing sequence and use the parallelogram identity to prove that it is a Cauchy
sequence.

3. Show that the unique minimizer Y of hX is characterized by

E[XZ] = E[Y Z] for all Z ∈ L2(Ω,B,P),

or equivalently,
E[X1B ] = E[Y 1B ] for all B ∈ B.

From now on, we denote this minimizer by E[X | B] and call it the conditional expectation of X
with respect to B.

4. Show that if X ≥ 0, then E[X | B] ≥ 0.

5. Show that the map X 7→ E[X | B] is linear on L2(Ω,A,P).

6. Let B and C be two sub-σ-algebras of A such that C ⊂ B. Prove the tower property:

E[E[X | B] | C] = E[X | C].

7. Show that |E[X | B]| ≤ E[|X| | B].

Hint: Write X = X+ −X−.

1We assume p ≥ 1 throughout this problem.
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Conditional Expectation � Beyond the L2 Case

Let X ∈ L1(Ω,A,P), and let B ⊂ A be a sub-σ-algebra. Consider the sequence of random variables
(Yn)n∈N = (E[min(X,n) | B])n∈N.

8. Prove that (Yn)n is a Cauchy sequence in L1(Ω,B,P), and deduce that (Yn)n converges in L1 to a
random variable Y ∈ L1(Ω,B,P).

Hint: Show that |Yn − Yp| ≤ E[(X −min(n, p))+ | B].

9. Prove that Y is uniquely characterized by

E[XZ] = E[Y Z] for all bounded B-measurable random variables Z,

or equivalently,
E[X1B ] = E[Y 1B ] for all B ∈ B.

From now on, we denote this limit by E[X | B], thereby extending the notion of conditional expectation
from the L2 setting to the L1 setting.

10. Prove that the properties established in Questions 4�7 continue to hold for this extension.

Now let X : Ω → R+ ∪ {+∞} be a nonnegative extended real-valued random variable. De�ne, as above,
the sequence (Yn)n = (E[min(X,n) | B])n.

11. Prove that (Yn)n converges almost surely to a random variable Y : Ω → R+ ∪ {+∞}.

12. Prove that Y is uniquely characterized by

E[XZ] = E[Y Z] for all nonnegative B-measurable random variables Z,

or equivalently,
E[X1B ] = E[Y 1B ] for all B ∈ B.

From now on, we write Y = E[X | B], thus extending the de�nition of conditional expectation to all
nonnegative extended real-valued random variables.

13. Prove that the properties established in Questions 4�7 continue to hold for this extension.

Conditional Expectation Given a Random Variable

Let Y be a Rd-values random variable and X a real-valued random variable, either nonnegative or L1.
The conditional expectation of X given Y , denoted by E[X | Y ], is de�ned as E[X | σ(Y )], where σ(Y )
is the σ-algebra generated by Y .

If X = (X1, . . . , Xd)
′ is a Rd-valued random vector, then the vector E[X | Y ] is de�ned componentwise

as (E[X1 | Y ], . . . ,E[Xd | Y ]).

14. Show that X is independent of Y if and only if for every bounded and nonnegative measurable
function h, we have

E[h(X) | Y ] = E[h(X)].

15. Let X and Y be independent random variables, and assume X has a distribution given by a
probability measure ν. Let h : R2 → R+ be a bounded measurable function. Show that

E[h(X,Y ) | Y ] =

∫
h(x, Y ) ν(dx).

The Gaussian Case

Recall that a random vector X = (X1, . . . , Xd)
′ is said to follow a multivariate Gaussian distribution

N (µ,Σ), where µ ∈ Rd and Σ is a symmetric, positive semi-de�nite d × d matrix, if its characteristic
function is given by

E
[
eiu

′X
]
= exp

(
iu′µ− 1

2u
′Σu

)
, ∀u ∈ Rd.
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Equivalently, X is a Gaussian vector if and only if every linear combination of its components is a
univariate normal random variable.

We denote by ν(· ;µ,Σ) the Gaussian measure with mean µ and covariance matrix Σ.

Let (X,Y ) = (X1, . . . , Xn, Y1, . . . , Ym)′ be a Gaussian random vector in Rn+m with covariance matrix

Σ =

(
ΣX ΣXY

Σ′
XY ΣY

)
.

16. Show that X and Y are independent if and only if ΣXY = 0.

17. Assume that ΣY is invertible. Show that there exists a unique matrix B such that the random
vector

X − E[X]−B(Y − E[Y ])

is independent of σ(Y ).

18. Deduce that
E[X | Y ] = E[X] + ΣXY Σ

−1
Y (Y − E[Y ]).

19. Show that for every bounded measurable function h : Rn → R+, we have

E[h(X) | Y ] =

∫
h(x) ν

(
dx ; E[X] + ΣXY Σ

−1
Y (Y − E[Y ]), ΣX − ΣXY Σ

−1
Y Σ′

XY

)
.

We say that the conditional distribution of X given Y is a multivariate Gaussian distribution with
mean E[X] + ΣXY Σ

−1
Y (Y − E[Y ]) and covariance matrix ΣX − ΣXY Σ

−1
Y Σ′

XY .

The Kalman Filter

We consider a probability space (Ω,A,P) and a dynamical system represented by a sequence (Xn)n∈N of
Rm-valued random variables, driven by control inputs and stochastic noise:

Xn+1 = FnXn + Un+1 +Wn+1,

where:

� X0 ∼ N (x̂0, P0), with x̂0 ∈ Rm and P0 a symmetric positive semi-de�nite m×m matrix;

� Fn is a given deterministic m×m matrix;

� Un+1 is a control input;

� Wn+1 ∼ N (0, Qn+1), with Qn+1 a deterministic symmetric positive semi-de�nite matrix.

The process (Xn)n is not directly observed. Instead, the observer/controller has access to a sequence of
Rp-valued measurements (Zn)n de�ned by:

Zn = HnXn + Vn,

where:

� Hn is a deterministic p×m matrix;

� Vn ∼ N (0, Rn), with Rn symmetric positive de�nite;

� The random variables (Wn)n, (Vn)n, and X0 are mutually independent.

The �ltering problem consists in estimatingXn given the observations (Z1, . . . , Zn) and controls (U1, . . . , Un),
i.e., computing the conditional distribution of Xn given the available information.

We de�ne the �ltration recursively as follows:

G0 = σ(X0), G̃n+1 = σ(Gn ∪ σ(Un+1)) = σ(X0, U1, . . . , Un+1, Z1, . . . , Zn),

Gn+1 = σ(G̃n+1 ∪ σ(Zn+1)) = σ(X0, U1, . . . , Un+1, Z1, . . . , Zn+1).

Assume that the conditional distribution of Xn given Gn is Gaussian N (x̂n, Pn).
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20. Show that the conditional distribution of(
Xn+1

Zn+1

)
given G̃n+1

is Gaussian with mean (
x̂n+1|n

Hn+1x̂n+1|n

)
, where x̂n+1|n = Fnx̂n + Un+1,

and covariance matrix (
Pn+1|n Pn+1|nH

′
n+1

Hn+1Pn+1|n Hn+1Pn+1|nH
′
n+1 +Rn+1

)
,

where Pn+1|n = FnPnF
′
n +Qn+1.

Hint: Consider the linear transformation(
Im 0

−Hn+1 Ip

)(
Xn+1

Zn+1

)
.

21. Deduce that the conditional distribution of Xn+1 given Gn+1 is Gaussian with mean

x̂n+1 = x̂n+1|n +Kn+1

(
Zn+1 −Hn+1x̂n+1|n

)
,

and covariance matrix
Pn+1 = Pn+1|n −Kn+1Hn+1Pn+1|n,

where
Kn+1 = Pn+1|nH

′
n+1(Hn+1Pn+1|nH

′
n+1 +Rn+1)

−1.

Remark: The matrix Kn+1 is called the Kalman gain.

22. Conclude.

23. (Bonus points) Code in Python an implementation of the Kalman �lter.
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