
Combinatorics: number of onto mappings, Stirling numbers and

Bell numbers

The goal of this problem is to derive several classical combinatorial formulas. We present two methods
for determining the number of onto mappings from one �nite set to another: one based on the inclusion�
exclusion principle (also known as the sieve method), and another using an inversion formula attributed
to Pascal.

We also explore two approaches for deriving Dobi�nski's formula, which gives the number of partitions of
a �nite set (i.e., the Bell numbers): one approach highlights the connection with the Poisson distribution,
and the other uses a generating function.

Preliminaries about onto mappings

For n, p ∈ N∗, let s(n, p) denote the number of onto mappings from a set of n elements to a set of p
elements. By convention, we also write s(n, 0) = 0 for n ≥ 1.

1. Compute s(n, p) for p > n.

2. Compute s(n, 1) and s(n, n).

3. Show that s(n, 2) = 2n − 2.

4. Show that ∀n ≥ 2, s(n, n− 1) = 1
2 (n− 1)n!.

Inclusion�exclusion principle

In this section and the next, we denote by A the set of functions from {1, . . . , n} to {1, . . . , p}.

5. What is the cardinal of A?

6. Let A1, ..., Ap be p sets. Prove by induction the sieve / Poncar�e's formula:∣∣∣∣∣∣
⋃

1≤i≤p

Ai

∣∣∣∣∣∣ =
p∑

k=1

∑
1≤i1<...<ik≤p

(−1)k−1

∣∣∣∣∣∣
⋂

1≤j≤k

Aij

∣∣∣∣∣∣ .
7. For i ∈ {1, . . . , p}, let Ai = {f ∈ A, f−1({i}) = ∅}. Prove that

s(n, p) =

∣∣∣∣∣∣A \
⋃

1≤i≤p

Ai

∣∣∣∣∣∣ .
8. Conclude that

s(n, p) =

p∑
k=1

Ck
p (−1)p−kkn.

Inversion formula

9. Let (ap)0≤p≤n and (bp)0≤p≤n be two tuples. Show that1

∀p ∈ {0, . . . , n} ap =

p∑
k=0

Ck
p bk ⇐⇒ ∀p ∈ {0, . . . , n} bp =

p∑
k=0

Ck
p (−1)p−kak.

10. By using a partition of A, show that

∀n, p ∈ N∗, pn =

p∑
k=1

Ck
p s(n, k).

1This inversion formula is due to Pascal.
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11. Conclude again that

∀n, p ∈ N∗, s(n, p) =

p∑
k=1

Ck
p (−1)p−kkn.

A �rst route towards Dobi�nski formula

For n, p ∈ N∗, let S(n, p) denote the number of partitions of a set of n elements into p (nonempty) subsets
(Stirling number of the second kind). Let also Bn denote the number of partitions of a set of n elements
(Bell number).

12. Explain why S(n, p) = s(n,p)
p! .

13. Explain why Bn =
∑∞

k=1 S(n, k).

14. Show that

∀n, p ∈ N∗, pn =

∞∑
k=1

(p)kS(n, k),

where (p)k = p(p− 1) . . . (p− k + 1).

15. If X is a Poisson-distributed random variable with parameter 1, show that E[(X)k] = 1, ∀k ∈ N∗.

16. Deduce Dobi�nski formula:

Bn =
1

e

∞∑
k=1

kn

k!
.

A second route towards Dobi�nski formula

We extend the de�nition of Bn to n = 0 by B0 = 1.

17. Show by a simple argument that ∀n ∈ N∗, Bn ≤ nn.

18. Let us de�ne

G : x ∈ [0, e−1) 7→
∞∑

n=0

Bn

n!
xn.

By using Stirling formula, prove that G is well-de�ned and C∞.

19. Show that ∀n ∈ N, Bn+1 =
∑n

k=0 C
k
nBk.

20. Deduce that G′(x) = exG(x) and that G(x) = ee
x−1.

21. Use a Taylor expansion of G to obtain Dobi�nski formula:

Bn =
1

e

∞∑
k=1

kn

k!
.

Key �ndings:

� The sieve / Poncar�e's formula:∣∣∣∣∣∣
⋃

1≤i≤p

Ai

∣∣∣∣∣∣ =
p∑

k=1

∑
1≤i1<...<ik≤p

(−1)k−1

∣∣∣∣∣∣
⋂

1≤j≤k

Aij

∣∣∣∣∣∣ .
� The number of onto mappings from a set of cardinal n to a set of cardinal p is s(n, p) =

∑p
k=1 C

k
p (−1)p−kkn.
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� The number Bn of partitions of a set of cardinal n is

Bn =
1

e

∞∑
k=1

kn

k!
.

� It is sometimes useful to encode a sequence into a function through power series. The resulting
function, called generating function, can sometimes be computed and reveals many properties of
the sequence.
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