
Convergence in distribution: from portmanteau to Slutsky and

beyond

The goal of this problem is to develop a deeper understanding of convergence in distribution, a concept
that plays a central role in both probability theory and statistics. The problem explores the Portmanteau
theorem and its consequences for characterizing convergence in distribution, the relationship between
convergence in probability and convergence in distribution, and Slutsky's theorem, which is fundamental
for establishing asymptotic results in statistics. As a bonus, the problem also includes Sche��e's lemma
concerning convergence of densities.

The connection between convergence in distribution and characteristic functions is deferred to a separate
problem.

Applications of the results presented here are ubiquitous in probability and statistics (see other problem
sets).

De�nitions

We consider a probability space (Ω,A,P) and a sequence of random variables (Xn)n∈N de�ned on this
probability space. All random variables in this problem are assumed to be Rd-valued unless otherwise
stated. The norm chosen in Rd is denoted by | · |.

We say that (Xn)n∈N converges in probability towards a random variable X (Xn
P−−−−−→

n→+∞
X) if and

only if
∀ϵ > 0, lim

n→+∞
P(|Xn −X| > ϵ) = 0.

We say that (Xn)n∈N converges in distribution towards a random variable1 X (Xn
D−−−−−→

n→+∞
X) if and

only if for all bounded continuous functions ϕ, limn→+∞ E [ϕ(Xn)] = E [ϕ(X)] .

We also recall the classical notion of almost sure convergence: (Xn)n∈N converges almost surely

towards a random variable X (Xn
a.s.−−−−−→

n→+∞
X) if and only if

P
({

ω ∈ Ω

∣∣∣∣ lim
n→+∞

Xn(ω) = X(ω)

})
= 1.

Portmanteau theorem

Let (Xn)n∈N be a sequence of random variables and X a random variable, all with values in Rd.

The goal in this section is to prove that the following assertions are equivalent:

a) For all bounded continuous functions ϕ from Rd to R,

lim
n→+∞

E [ϕ(Xn)] = E [ϕ(X)] .

b) For all bounded Lipschitz functions ϕ from Rd to R,

lim
n→+∞

E [ϕ(Xn)] = E [ϕ(X)] .

1The convergence depends in fact only on the distribution of X and not on X itself.
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c) For all open sets O of Rd,
lim inf
n→+∞

P (Xn ∈ O) ≥ P (X ∈ O) .

d) For all closed sets F of Rd,
lim sup
n→+∞

P (Xn ∈ F ) ≤ P (X ∈ F ) .

e) For all Borel sets B of Rd such that the frontier ∂B = B̄ \ B̊ veri�es P (X ∈ ∂B) = 0,

lim
n→+∞

P (Xn ∈ B) = P (X ∈ B) .

1. Prove that a) implies b).

Let O be an open set of Rd. Let us consider for all k ∈ N the function

ϕk : x ∈ Rd 7→ min (kd(x,Oc), 1) where d(x,Oc) = inf
y/∈O

|x− y|.

2. Prove that for all k ∈ N the function ϕk is Lipschitz.

3. Prove that for all x ∈ Rd, the sequence (ϕk(x))k∈N is nondecreasing and converges towards 1O(x).

4. Deduce that b) implies c)

5. Prove that c) and d) are equivalent.

6. Prove that c) and d) imply e).

Let Z be a random variable. We call atom of Z any point a such that P(Z = a) > 0.

7. For any n ∈ N∗, prove that there are at most n points a such that P(Z = a) ≥ 1
n .

8. Deduce that the set of atoms of Z is at most countable.

Let ϕ be a bounded nonnegative continuous function. For all x > 0, let us de�ne Bx = ϕ−1((x,+∞)).

9. Prove that

∀n ∈ N, E[ϕ(Xn)] =

∫ ∥ϕ∥∞

0

P(Xn ∈ Bx)dx and E[ϕ(X)] =

∫ ∥ϕ∥∞

0

P(X ∈ Bx)dx.

10. Prove that ∀x > 0, ∂Bx ⊂ ϕ−1({x}).

11. Deduce that {x > 0|P(X ∈ ∂Bx) > 0} is at most countable.

12. Conclude that e) implies that limn→+∞ E[ϕ(Xn)] = E[ϕ(X)].

Let ϕ be a bounded continuous function.

13. Prove that e) implies that limn→+∞ E[ϕ(Xn)] = E[ϕ(X)].

14. Conclude.
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Convergence in probability vs. convergence in distribution

15. Show that if (Xn)n∈N converges in probability towardsX, then it converges in distribution towardsX.
Hint: proceed by contradiction and remember that convergence in probability implies almost sure
convergence up to a subsequence.

16. Show that if (Xn)n∈N converges in distribution towards a constant random variable X (i.e. there
exists a ∈ Rd such that P(X = a) = 1) then it converges in probability towards X.
Hint: use assertion c) or d) of portmanteau theorem.

Slutsky theorem

Let (Xn)n∈N be a sequence of Rd-valued random variables and (Yn)n∈N be a sequence of Rk-valued
random variables.

We assume that Xn
P−−−−−→

n→+∞
X and Yn

D−−−−−→
n→+∞

Y where X and Y are two random variables with values

in Rd and Rk respectively.

We also assume that X is constant (i.e. there exists a ∈ Rd such that P(X = a) = 1).

Let ϕ be a bounded Lipschitz function from Rd × Rk to R. We denote by K its Lipschitz constant.

17. Prove that limn→+∞ E [ϕ(a, Yn)] = E [ϕ(a, Y )] .

18. Let ϵ > 0. Show that ∀n ∈ N, |ϕ(Xn, Yn) − ϕ(a, Yn)| ≤ 2∥ϕ∥∞1|Xn−a|>ϵ + Kϵ. Deduce that
lim supn→+∞ |E [ϕ(Xn, Yn)]− E [ϕ(a, Yn)] | ≤ Kϵ.

19. Conclude that (Xn, Yn)
D−−−−−→

n→+∞
(X,Y ).

Characterization with cumulative distribution functions

For any real-valued random variable X, we de�ne FX the cumulative distribution function of X by

FX : x ∈ R 7→ P(X ≤ x).

20. Prove that FX is nondecreasing and c�adl�ag.

21. Prove that the set of points where FX is discontinuous is at most countable.

Let (Xn)n∈N be a sequence of real-valued random variables and X a real-valued random variable.

22. Prove that if Xn
D−−−−−→

n→+∞
X, then limn→+∞ FXn

(x) = FX(x) for all x ∈ R where FX is continuous.

We assume now that limn→+∞ FXn
(x) = FX(x) for all x ∈ R where FX is continuous.

23. Prove that for all x ∈ R,

lim sup
n→+∞

P(Xn ≤ x) ≤ P(X ≤ x) and lim inf
n→+∞

P(Xn < x) ≥ P(X < x).

24. Deduce that ∀a, b ∈ R ∪ {−∞,+∞} with a < b, lim infn→+∞ P(Xn ∈ (a, b)) ≥ P(X ∈ (a, b)).
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25. Conclude that Xn
D−−−−−→

n→+∞
X.

Hint: Use assertion c) of portmanteau theorem.

26. Conclude.

(Bonus) Characterization with density functions: Sche��e's lemma

Let (Xn)n∈N be a sequence of random variables and X a random variable, all with values in Rd.

Let us consider a Borel measure µ on Rd.

We assume that for all n ∈ N, Xn has a probability density function fn ∈ L1(µ) with respect to the
measure µ. We also assume that X has a probability density function f ∈ L1(µ) with respect to the
measure µ.

We assume that (fn)n∈N converges pointwise towards f .

27. Prove that limn→+∞
∫
Rd min(fn(x), f(x))dµ(x) =

∫
Rd f(x)dµ(x).

28. Show that ∀a, b ∈ R, |a− b| = a+ b− 2min(a, b).

29. Deduce Sche��e's lemma: (fn)n∈N converges in L1(µ) towards f , i.e. limn→+∞
∫
Rd |fn(x)−f(x)|dµ(x).

30. Conclude that Xn
D−−−−−→

n→+∞
X.

Remark: this last result is mainly used for two types of µ: discrete measures and the Lebesgue measure
on Rd.
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