
The characteristic function: injectivity, L�evy's continuity

theorem, and the CLT

The goal of this problem is to prove two important results regarding the characteristic function. The �rst
one is an injectivity result: the characteristic function of a random variable characterizes its distribution.
The second result is known as L�evy's continuity theorem and relates the convergence in distribution of
a sequence of random variables to the convergence of the associated sequence of characteristic functions
towards a function continuous at point 0.

These results are part of the basic toolbox of anybody interested in probability. In particular, they are
essential to prove the notorious Central Limit Theorem (CLT).

In this problem we concentrate on real-valued random variables for the sake of simplicity but it is
noteworthy that the results generalize easily to Rd-valued random variables.

De�nition and �rst properties

For any real-valued random variable X, we denote by ϕX the characteristic function of X de�ned by:

∀t ∈ R, ϕX(t) = E[exp(itX)].

1. Prove that ϕX is a well-de�ned complex-valued function bounded by 1.

2. Prove that ∀t, h ∈ R, |ϕX(t + h) − ϕX(t)| ≤ E[| exp(ihX) − 1|]. Deduce that ϕX is uniformly
continuous.

3. Let p ∈ N∗. Prove that if X ∈ Lp then ϕX is a function of class Cp with

ϕX(t) =

p∑
k=0

ik

k!
E[Xk]tk + o(tp).

The Gaussian case

Let X be a Gaussian N (0, 1) random variable.

4. Prove that ϕX is a function of class C1 and that ∀t ∈ R, ϕ′X(t) = −tϕX(t).

5. Deduce that ∀t ∈ R, ϕX(t) = exp
(
− t2

2

)
.

Let X be a Gaussian N (µ, σ2) random variable.

6. Prove that ∀t ∈ R, ϕX(t) = exp
(
itµ− 1

2σ
2t2

)
.

Injectivity

Let Y be a real-valued random variable distributed according to a probability measure µ. Let X be a
N (0, 1) random variable independent of Y .

For n ∈ N∗, we de�ne Zn = Y + X
n .
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Let us consider a continuous and bounded function ψ : R → R.

7. Prove that

E[ψ(Zn)] =
n√
2π

∫
z∈R

ψ(z)

(∫
y∈R

exp

(
−1

2
n2(z − y)2

)
µ(dy)

)
dz.

8. Prove that

∀z ∈ R,
∫
y∈R

exp

(
−1

2
n2(z − y)2

)
µ(dy) =

∫
x∈R

exp (−izx) 1

n
√
2π

exp

(
−1

2

x2

n2

)
ϕY (x)dx.

Hint: Recall that exp
(
− 1

2n
2(z − y)2

)
= ϕnX(z − y) = ϕnX(y − z).

9. Prove that limn→+∞ E[ψ(Zn)] = E[ψ(Y )].

10. Deduce that∫
z∈R

ψ(z)µ(dz) = lim
n→+∞

1

2π

∫
z∈R

ψ(z)

(∫
x∈R

exp (−izx) exp
(
−1

2

x2

n2

)
ϕY (x)dx

)
dz.

Let Y1 and Y2 be two real-valued random variables with the same characteristic function.

11. Prove that Y1 and Y2 have the same distribution.

L�evy's continuity theorem

In what follows we will need a classical compactness result for probability measures on R (implicity
equipped with the Borelians) which is a special case of Prokhorov's Theorem:

Theorem 1. Let us consider a sequence (νn)n∈N of probability measures on R. Assume that the sequence

is tight in the sense that

∀ϵ > 0, ∃A > 0,∀n ∈ N, νn(R \ [−A,A]) ≤ ϵ.

Then, there exists a probability measure ν on R and a subsequence (νnk
)k∈N of (νn)n∈N such that (νnk

)k∈N
weakly converges towards ν, i.e. for all continuous and bounded functions ψ : R → R,

lim
k→+∞

∫
x∈R

ψ(x)νnk
(dx) =

∫
x∈R

ψ(x)ν(dx).

This result of functional analysis and measure theory is admitted here.

Let us consider a sequence (Xn)n∈N of real-valued random variables. For all n ∈ N let us denote by µn

and ϕn respectively the probability measure on R associated with Xn and the characteristic function
of Xn.

We assume that (ϕn)n∈N converges pointwise towards a function ϕ. We also assume that ϕ is continuous
at 0.

12. Prove that

∀a > 0,
1

2a

∫ a

−a

ϕn(t)dt =

∫
x∈R

sin(ax)

ax
µn(dx).

13. Prove that ∀ϵ > 0, ∃η > 0,∃n0 ∈ N,∀n ≥ n0,∫
x∈R

(
1− sin(ηx)

ηx

)
µn(dx) =

1

2η

∫ η

−η

(1− ϕn(t))dt ≤
ϵ

2
.
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14. Deduce that
∀ϵ > 0, ∃η > 0,∃n0 ∈ N,∀n ≥ n0, µn(R \ [−2/η, 2/η]) ≤ ϵ.

15. Prove that
∀ϵ > 0,∃A > 0,∀n ∈ N, µn(R \ [−A,A]) ≤ ϵ.

16. Prove that there exists a probability measure µ on R and a subsequence (µnk
)k∈N of (µn)n∈N such

that (µnk
)k∈N weakly converges towards µ and that ϕ is the characteristic function associated with

any random variable with distribution µ.

17. Prove that in fact (µn)n∈N weakly converges towards the unique probability measure µ such that ϕ
is the characteristic function associated with any random variable with distribution µ.

18. Conclude that (Xn)n∈N converges in distribution towards any random variable with distribution µ.

This beautiful result is called L�evy's continuity theorem.

Central Limit Theorem

Let us consider a sequence (Xn)n∈N of real-valued random variables. Assume they are i.i.d and in L2.

Let us denote by µ and σ2 their common expected value and variance.

For all n ∈ N∗, let us introduce Zn =
√
n
(
X1+···+Xn

n − µ
)
.

19. Prove that for all n ∈ N∗, the characteristic function of Zn is

ϕn : t 7→ ϕX1−µ

(
t√
n

)n

.

20. Prove that (ϕn)n∈N∗ converges pointwise towards the function ϕ : t 7→ exp
(
− 1

2σ
2t2

)
.

21. Conclude.
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